Scientific and research competencies of
students from an interdisciplinary
perspective in general
secondary education
Competencias científicas e investigativas
estudiantiles desde una perspectiva
interdisciplinaria en la educación
media general
27
Carmen Eloísa Sánchez Molina
https://orcid.org/0000-0001-9564-2768
Santa Bárbara, Barinas state / Venezuela
Revista Digital de Investigación y Postgrado, 6(12), 27-47
ISSN electrónico: 2665-038X
How to citer: Sánchez, M. C. E. (2025). Scientific and research competencies of students from an inter-
disciplinary perspective in general secondary education. Revista Digital de Investigación y Postgrado,
6(12), 27-47. https://doi.org/10.59654/tgpqg354
* Doctor of Education, Master in University Teaching with a mention in Education, Universidad Nacional Experimental
de los Llanos Occidentales Ezequiel Zamora. Barinas, Barinas – Venezuela. Tenured Lecturer, assistant category.
Universidad Nacional Experimental de los Llanos Occidentales Ezequiel Zamora. Santa Bárbara de Barinas – Vene-
zuela. Email: carmenisajose@gmail.comVenezuela.
Received: may / 5 / 2025 Accepted: may / 20 / 2025
https://doi.org/10.59654/tgpqg354
Abstract
This paper analyzes the development of scientific and research competencies in General Secon-
dary Education students from an interdisciplinary perspective, aiming to construct a theoretical
approach focused on students’ integral development. The study follows a qualitative methodology,
using the hermeneutic method and grounded theory, and is based on in-depth interviews with
natural science teachers from institutions in Santa Bárbara de Barinas. Findings reveal that inter-
disciplinary approaches foster critical thinking skills in students. Data analysis produced 44 emer-
ging codes and two axial categories, enabling the construction of new theoretical concepts. The
conclusions emphasize the need to strengthen these competencies within the Venezuelan edu-
cational context, aligned with national policies. This study presents an innovative contribution to
educational and scientific advancement, seeking to improve teaching quality and promote the
country's scientific and technological independence.
Keywords: Scientific competencies, Secondary Education, Natural Sciences, Venezuela.
Resumen
El documento analiza el desarrollo de competencias científicas e investigativas en estudiantes
de Educación Media General desde un enfoque interdisciplinario, con el propósito de construir
una aproximación teórica orientada al desarrollo integral del estudiante. La investigación es
cualitativa, basada en el método hermenéutico y la teoría fundamentada, y se apoya en entre-
vistas en profundidad a docentes de ciencias naturales en instituciones de Santa Bárbara de
Barinas. Los hallazgos evidencian que la interdisciplinariedad impulsa habilidades críticas en los
estudiantes. El análisis generó 44 códigos emergentes y dos categorías axiales, lo cual permitió
formular nuevos conceptos teóricos. Las conclusiones destacan la necesidad de fortalecer estas
competencias dentro del contexto educativo venezolano, en consonancia con las políticas na-
cionales. Este estudio representa un aporte innovador al avance educativo y científico, con
miras a mejorar la calidad de la enseñanza y promover la independencia científica y tecnológica
del país.
Palabras clave: Competencias científicas, Educación Media General, Ciencias Naturales, Venezuela.
Introduction
In the contemporary educational landscape, marked by rapid scientific, technological, and social
transformations, it has become imperative to rethink teaching-learning models in the natural
sciences area. Science education faces the historical challenge of training citizens capable of
understanding the complexity of today's world and actively participating in solving relevant
socio-scientific problems (Pozo & Gómez, 2010). This challenge acquires special relevance at
the General Secondary Education level, where the foundations for the development of scientific
thinking are laid and fundamental attitudes toward science and its method are shaped (Minis-
terio del Poder Popular para la Educación, MPPE 2017).
© 2025, Instituto de Estudios Superiores de Investigación y Postgrado, Venezuela
28 Carmen Eloísa Sánchez Molina
Revista Digital de Investigación y Postgrado, 6(12), 27-47
Electronic ISSN: 2665-038X
29
Scientific and research competencies of students from an interdisciplinary
perspective in general secondary education
The concept of scientific and investigative competencies has emerged as a central axis in this
educational debate. According to Gamboa et al. (2020), these competencies represent an in-
tegrated set of knowledge, skills, attitudes, and values that enable students to address scientific
problems with methodological rigor, creativity, and critical thinking. However, as demonstrated
by Arias' (2017) studies in the Venezuelan context, there is a marked gap between this educa-
tional ideal and the predominant pedagogical practices in classrooms, which frequently reduce
science teaching to the transmission of decontextualized conceptual content.
The described situation reflects what Freire (2012) called "banking education," a model that con-
ceives students as mere passive recipients of information rather than active protagonists of their
learning process. This criticism becomes particularly relevant when analyzing, as Sánchez and
Herrera (2019) have done, the actual conditions under which science teaching develops in many
Venezuelan institutions: insufficiently equipped laboratories, teachers with limited opportunities
for pedagogical updating, and assessments that prioritize rote memorization over deep un-
derstanding and knowledge application.
The Venezuelan Natural Sciences curriculum for Secondary Education (MPPE, 2017) formally
establishes the need for an interdisciplinary approach integrating perspectives from Biology,
Chemistry, Physics, and Earth Sciences. Nevertheless, as revealed by Arias' (2017) research, this
interdisciplinarity rarely materializes in classroom practices, where fragmented knowledge or-
ganization and scarce articulation between different scientific areas persist. This curricular dis-
sociation has significant consequences for student training, limiting their ability to address
complex problems that, by their nature, require integrative approaches from multiple discipli-
nes.
In this context, developing scientific and investigative competencies from an interdisciplinary
perspective emerges as a promising pedagogical alternative. As Gamboa et al. (2020) argue,
this approach allows overcoming the artificial division between scientific disciplines and con-
necting school learning with real problems from social and environmental contexts. Along these
lines, Herrera's (2016) work in Spain has demonstrated how didactic strategies based on scientific
inquiry can significantly transform educational practices, fostering students' critical thinking skills,
collaborative work, and creative problem-solving.
International experience offers valuable lessons for the Venezuelan context. Figueroa's (2017)
studies in Peru have evidenced the positive impact of active methodologies on developing in-
vestigative competencies, while Lupión and Martín's (2016) research highlights the importance
of linking scientific learning with global challenges like climate change or environmental sustai-
nability. These contributions agree on the need to transcend traditional teaching models, pro-
moting instead pedagogies that stimulate scientific curiosity, grounded questioning, and
collaborative knowledge construction.
At the regional level, research such as that by in Colombia and Barón (2019) in Panama has
provided significant evidence about factors that either favor or hinder the development of scien-
© 2025, Instituto de Estudios Superiores de Investigación y Postgrado, Venezuela
30 Carmen Eloísa Sánchez Molina
tific competencies in secondary education students. These studies coincide in highlighting the
crucial role of teacher training, availability of adequate resources, and implementation of eva-
luation strategies consistent with the objectives of contemporary science education.
In this line of thought, the present study aims to contribute to this educational debate from a
theoretical-practical perspective, articulating conceptual foundations about scientific competen-
cies (Gamboa et al., 2020; Pozo & Gómez, 2010) with critical analysis of relevant pedagogical ex-
periences in the Ibero-American context (Herrera, 2016; Figueroa, 2017; Sánchez & Herrera, 2019).
Methodologically, the research combines: (a) A comprehensive documentary analysis of Vene-
zuelan curricular frameworks (MPPE, 2017) in dialogue with the most advanced theoretical pro-
posals in science didactics. (b) Systematic review of innovative pedagogical experiences developed
in contexts similar to Venezuela's. (c) A field study in educational institutions of the Ezequiel Zamora
municipality that allows contrasting theoretical references with classroom realities.
The results of this research seek to provide concrete elements to overcome the limitations iden-
tified by Arias (2017) and Sánchez and Herrera (2019). The relevance of this study transcends
the academic sphere, since as Freire (2012) points out, quality science education is a fundamental
right and a necessary condition for the full development of citizenship in democratic societies
Theoretical foundations
The development of scientific and research competencies in General Secondary Education re-
quires a solid theoretical framework that integrates psychological, pedagogical, and sociocultural
perspectives. The authors cited in this article provide essential foundations for understanding
how these competencies are constructed and how they can be fostered through an interdisci-
plinary approach. Below are the main theoretical references organized into three key axes:
Conceptual foundations of competencies
The concept of competency is polysemic and has been approached from various disciplines.
From the perspective of cultural psychology, Vygotsky (1985) emphasizes that competencies
are situated actions, mediated by social interaction and context. This view highlights the social
nature of learning, where knowledge is collectively constructed. Complementarily, Chomsky
(1970) introduces the notion of linguistic competence as an innate mental structure, while Hymes
(1996) expands this perspective by incorporating communicative competence, which considers
language use in specific social contexts.
In the educational field, authors such as Tobón (2006a, 2006b) and Perrenoud (1999) have con-
tributed to defining competencies as integrated capacities that combine knowledge, skills, and
attitudes to solve problems in real contexts. These ideas have influenced curricular reforms in
Latin America, such as in Colombia (Law 30 of 1992) and Peru (National Curriculum of Basic
Education), where competencies have been incorporated as the central axis of student training.
Revista Digital de Investigación y Postgrado, 6(12), 27-47
Electronic ISSN: 2665-038X
31
Teaching-learning models in natural sciences
Science didactics has evolved from traditional models toward more active and constructivist approa-
ches. Freire (2012) criticizes the "banking" model, where the student is a mere passive recipient of
knowledge, and advocates for a liberating education that fosters critical thinking. In contrast, the dis-
covery model (Bruner, 1968) and the inquiry model (Gil, 1993) promote students' construction of know-
ledge through exploration and authentic problem-solving.
Ausubel (1983) highlights the importance of meaningful learning, where new knowledge
integrates with prior knowledge, while Piaget (1968a, 1968b) and Vygotsky (2009) provide
key insights from constructivism. Piaget emphasizes cognitive development through stages
(particularly formal operations in adolescents), whereas Vygotsky introduces the Zone of
Proximal Development (ZPD), where the teacher acts as a mediator to enhance emerging
skills.
Interdisciplinary perspective and scientific competencies
Interdisciplinarity emerges as a key approach to developing scientific and investigative compe-
tencies. Gamboa et al. (2020) define these competencies as the ability to observe, question,
design experiments, and communicate findings, linking scientific knowledge to relevant socio-
environmental problems. This vision aligns with successful experiences documented by Herrera
(2016) in Spain and Figueroa (2017) in Peru, where strategies such as project-based learning and
guided inquiry proved effective.
The Venezuelan curriculum (MPPE, 2017) theoretically promotes this approach, though its im-
plementation faces challenges, such as passive methodologies and a lack of resources (Arias,
2017; Sánchez & Herrera, 2019). To overcome these limitations, integrating the following didactic
strategies is proposed: (a) Pre-instructional: Activation of prior knowledge (Díaz & Hernández,
2004). (b) Co-instructional: Cooperative learning and problem-solving (Frola & Velásquez, 2011).
(c) Post-instructional: Portfolios and self-assessment to reinforce learning.
Methodology
The study adopted a qualitative approach (also referred to as phenomenological, interpretive,
or naturalistic), focused on understanding the perspectives and experiences of secondary edu-
cation teachers in the Natural Sciences field (Rojas de Escalona, 2010; Galeano, 2020). This ap-
proach allowed for the analysis of the participants' subjective and intersubjective realities,
emphasizing the description and interpretation of the phenomenon within its natural context.
The hermeneutic method was employed, facilitating an in-depth interpretation of teachers' dis-
courses through the hermeneutic circle (Martínez, 2012; Gadamer, 1984). This process involves
constant dialogue between the parts (interviews) and the whole (educational context), enabling
a holistic understanding of scientific and investigative competencies.
Scientific and research competencies of students from an interdisciplinary
perspective in general secondary education
© 2025, Instituto de Estudios Superiores de Investigación y Postgrado, Venezuela
32 Carmen Eloísa Sánchez Molina
Additionally, grounded theory (Charmaz, 2013) was integrated to analyze actions and mea-
nings through: (a) Open coding: Identification of emerging categories from the data. (b) Axial
coding: Establishing relationships between categories to build an interpretive framework. (c)
Theoretical sampling: Iterative selection of participants until theoretical saturation was re-
ached.
Regarding the setting and participants, the research was conducted in five educational institu-
tions in Santa Bárbara de Barinas (Venezuela), selected for accessibility and diversity (public/pri-
vate). The key informants were five Natural Science teachers with: (a) Training in Biology,
Chemistry, or related fields. (b) A minimum of five years of teaching experience. (c) Specialization
or master's degrees.
The data collection technique used was in-depth interviews (Hurtado de Barrera, 2012) as the
primary method, following a flexible thematic guide that addressed: (a) Perceptions of scientific
competencies. (b) Applied didactic strategies. (c) Challenges in interdisciplinary teaching. The
interviews recorded not only verbal responses but also nonverbal elements (tone, gestures),
enriching the analysis.
It is worth noting that regarding data analysis techniques, the guidelines of Martínez (2007) and
Strauss and Corbin (2002) were taken into consideration. The following were implemented: (a)
Categorization: Coding of speech acts into themes. (b) Structuring: Organization of data through
tables and semantic networks. (c) Contrasting: Comparison of findings with theoretical frame-
works. (d) Theorization: Construction of an interpretative model on scientific competencies from
an interdisciplinary perspective.
To ensure methodological rigor and guarantee validity and reliability, the following was applied:
(a) Triangulation, comparing interview data with scientific literature. (b) Theoretical saturation,
verifying that new data did not generate additional categories. (c) Reflexivity, with explicit ack-
nowledgment by the researcher regarding their interpretive role to minimize biases. It should
also be noted that the following ethical considerations were taken into account: (a) Informed
consent from participants. (b) Anonymity in the use of data.
Results and discussion
In this context, the hermeneutic unit corresponding to the data consisted of five (5) documents
containing the analysis information. The data were distributed across a total of 41 codes, assigned
as follows: (a) 27 Codes in primary document 1. (b) 29 Codes in primary document 2. (c) 32 Codes
in primary document 3. (d) 27 Codes in primary document 4. (e) 29 Codes in primary document
5.
The dynamic analysis categories emerged as the interview analysis progressed, allowing each
code to be carefully examined, leading to the creation of two axial categories (see following figu-
res).
Revista Digital de Investigación y Postgrado, 6(12), 27-47
Electronic ISSN: 2665-038X
33
Figure 1
Semantic network of teaching models or approaches.
Source: Sánchez (2025). Prepared based on the analysis of interview results.
Figure 2
Semantic network of scientific and research competencies
Source: Sánchez (2025). Prepared based on the analysis of interview results.
Scientific and research competencies of students from an interdisciplinary
perspective in general secondary education
© 2025, Instituto de Estudios Superiores de Investigación y Postgrado, Venezuela
34 Carmen Eloísa Sánchez Molina
The methodological triangulation applied in this study integrated three key dimensions to validate
the findings: (a) Empirical data (teacher interviews). (b) Theoretical framework (specialized authors).
(c) Researcher's interpretation. Below is a brief synthesis of the contrastive analysis of emerging
categories, illustrated with the most relevant open codes. In the original research, this aspect spans
nearly a hundred pages:
1. Problem-Based Learning (PBL)
Teachers: "Problem-based projects let us see real-world applications of science" (Inf.
1). "Students solve community issues, like water pollution" (Inf. 2).
Theory: "Active methodology focused on authentic problems that integrates disci-
plines" (Marra et al., 2014, p. 221). "Develops competencies such as argumentation
and teamwork" (Rivera de Parada, 2007, p. 105).
Researcher: PBL demonstrates high effectiveness by linking learning to relevant so-
cial problems, though it requires additional resources and teacher training for full
implementation.
2. Collaborative Learning
Teachers: "Group activities are essential for scientific projects" (Inf. 1). "Teamwork im-
proves research skills" (Inf. 4).
Theory: Collective process with positive interdependence (Johnson et al., 1994). "Ge-
nerates mechanisms for meaningful learning" (Vaillant y Manso, 2019, p.23).
Researcher: Collaboration replicates real scientific work, but requires teacher gui-
dance to prevent unequal contributions.
3. Experiential Learning
Teachers: "Educational games create memorable learning" (Inf. 3). "Field practices
are irreplaceable" (Inf. 4).
Theory: Knowledge is created through transformation of experiences (Instituto Tec-
nológico de Monterrey, 2010b). Links real contexts with learning (Samper y Ramírez,
2014).
Researcher: Although costly, experiential learning yields the most lasting results in
scientific competencies.
4. Meaningful Learning
Teachers: "We connect theory with everyday phenomena" (Inf. 1). "We start from
the known to explore the new" (Inf. 3).
Theory: "Requires relating new knowledge to existing cognitive structure" (Moreira,
2017, p.2). Process of meaning attribution (Latorre, 2017).
Researcher: The connection with personal experiences is the most effective bridge
for scientific learning.
5. Constructivism
Teachers: “Students construct knowledge through projects" (Inf.1, 2, 3).
Revista Digital de Investigación y Postgrado, 6(12), 27-47
Electronic ISSN: 2665-038X
35
Theory: "Active reconstruction of meanings" (Coll et al., 1999, p.9). "Process of perso-
nal elaboration" (Porlán, 2002, p.19).
Researcher: Constructivism requires highly trained teachers to properly guide the process.
6. Deep Understanding
Teachers: "We aim for them to apply concepts in new contexts" (Inf. 1). "Practical
demonstrations improve understanding" (Inf. 2).
Theory: "Ability to use knowledge creatively" (Otálora, 2009, p.123). "Knowledge
transferability" (Gardner, 2000).
Researcher: True understanding is evidenced in innovative application of concepts.
7. Developing Curiosity and Critical Thinking
Teachers: "Researchable questions are our starting point" (Inf. 1). "The laboratory
fosters questioning" (Inf. 2).
Theory: Curiosity as learning engine (United Nations). Critical thinking as antidote
to misinformation (Thrive Teaching, 2024).
Researcher: These competencies form the foundation for training authentic scien-
tists and informed citizens.
8. Learning Assessment
Teachers: "We evaluate processes, not just results" (Inf. 3). "Continuous feedback is
key" (Inf. 5).
Theory: "Regulatory approach to learning" (Amengual, 1989, p.31). Integrated into
the educational process (Alves y Acevedo, 1999, p.23).
Researcher: Formative assessment democratizes learning but requires more teacher time.
9. Experimentation
Teachers: "The laboratory is our best classroom" (Inf.1). "Experiments develop analy-
tical skills" (Inf. 2).
Theory: Foundation of the scientific method (Canizales et al., 2004, p.26). Goes be-
yond mere observation (Carvajal, 2011, p.46).
Researcher: The lack of well-equipped laboratories is the main limitation for deve-
loping research competencies.
10. Hypothesis Formulation
Teachers: "We teach how to propose testable predictions" (Inf. 3). "Projects include
hypothesis verification" (Inf. 4).
Theory: Tentative explanations (Vélez, 2001, p.18). Verifiable predictions (Espinoza,
2018, p.126).
Researcher: This competency distinguishes scientific thinking from common sense.
11. Critical Data Interpretation
Teachers: "We analyze data from school research" (Inf. 3). "We use basic statistics in
Scientific and research competencies of students from an interdisciplinary
perspective in general secondary education
© 2025, Instituto de Estudios Superiores de Investigación y Postgrado, Venezuela
36 Carmen Eloísa Sánchez Molina
projects" (Inf. 5).
Theory: Information evaluation with criteria (Paul y Elder, 2003, p.4). Practical appli-
cation of knowledge (Educación Gratuita, 2024).
Researcher: Essential skill in the era of infodemics and big data.
12. Interdisciplinarity
Teachers: "We integrate biology, physics, and chemistry" (Inf. 1). "Projects address
problems from multiple disciplines" (Inf. 5).
Theory: Integrative vision of knowledge (Morin, 1995). "Necessary for complex pro-
blems" (Araya et al., 2006, p.407).
Researcher: Breaking disciplinary barriers is the greatest current curricular challenge.
13. Research and Use of Evidence
Teachers: "Students collect and analyze data" (Inf. 2). "We use technology for re-
search" (Inf. 5).
Theory: Foundation of scientific work (Ministerio de Educación, 2019a). Requires
methodological rigor (Secretaría de Educación Pública, s.f).
Researcher: This competency needs further development in the Venezuelan curri-
culum.
14. Prior Knowledge
Teachers: "We start from students' prior ideas" (Inf. 3). "We connect with everyday
experiences" (Inf. 3).
Theory: Starting cognitive structure (Sulmont, 2022). "Anchor for new learning"
(López, 2009, p.5).
Researcher: Ignoring prior knowledge is the most common mistake in traditional
teaching.
15. Critical thinking
Teachers: "We promote evidence-based questioning" (Inf.1). "Evidence-based de-
bates" (Inf. 5).
Theory: "Strategies and mental representations people use to solve problems, make
decisions, and learn new concepts" (Shaw, 2014, p.66). "Essential citizen competency"
(Benzanilla et al., 2018, p.90).
Researcher: Key skill to face 21st-century challenges.
16. Learning Assessment
Teachers: "We combine formative and summative assessments" (Inf. 4). "We value
processes, not just products" (Inf. 3).
Theory: "Comprehensive curriculum approach" (Amengual, 1989, p.31). "Oriented
toward improvement" (González, 1999, p.36).
Researcher: Traditional assessment does not measure authentic scientific compe-
tencies.
Revista Digital de Investigación y Postgrado, 6(12), 27-47
Electronic ISSN: 2665-038X
37
After analyzing the aforementioned categories, the study reached a theorization phase which
proposed that developing scientific and research competencies in General Secondary Education
requires an educational praxis grounded in active pedagogical models that transcend traditional
transmission-based approaches (Flórez, 1999).
In this regard, natural science teachers employ PBL (Problem-Based Learning) as a central stra-
tegy to develop scientific and research competencies. This approach, characterized by working
with real-world problems, fosters student participation, critical thinking development, and team-
work collaboration (Instituto Tecnológico y de Estudios Superiores de Monterrey, 2010). Accor-
ding to Marra et al. (2014), PBL enables students to apply scientific knowledge to authentic
situations, reinforcing their motivation and ability to transfer learning to everyday contexts.
Additionally, it is complemented with playful activities such as educational games, which create
a dynamic learning environment and promote cognitive, emotional, and social development
(Mazabuel, 2016). However, for a deeper understanding of competencies, scientific argumen-
tation techniques are incorporated - essential for critical reasoning and collaborative knowledge
construction (Ribera de Parada, 2007; Eggen & Kauchak, 2015).
Teachers implement collaborative learning to develop scientific competencies, based on "face-
to-face" interactions (Johnson et al., 1994). This methodology promotes knowledge exchange,
social skills, and teamwork - all essential for science as a collective practice (Bunge, 2014). Ac-
cording to Roselli (2016), collaboration encourages shared responsibility and joint solution-buil-
ding. Collaborative projects prepare students to solve real problems (Rivera de Parada, 2004),
developing critical thinking and research competencies through interdisciplinary work (Vaillant
& Manso, 2019).
Experiential learning promotes scientific competencies through practical activities like laboratory
dissections, where students "directly observe brain anatomy" (Inf. 2). According to Universidad
del Desarrollo (2021), this approach involves applying knowledge in real contexts, strengthening
critical thinking and autonomy. Kolb (1984) highlights its observation-reflection-experimentation
cycle, which facilitates deep understanding and practical application of scientific concepts. Tea-
chers report higher student motivation and development of research skills when students be-
come active protagonists of their learning (Inf. 5).
Meaningful learning is based on connecting prior knowledge with new concepts (Tekman, 2021),
enabling students to understand and apply scientific concepts in real contexts. Teachers use stra-
tegies like projects and debates to foster critical thinking (Inf. 2). This approach develops research
competencies and socio-environmental awareness (Inf. 4). Complementarily, constructivism (Le
Moigne in Perraudeau, 2001) promotes active learning through PBL and interdisciplinary projects
(Inf. 5), where students collaboratively construct knowledge (Rosillo, 2018; Mamani, 2017).
Some teachers employ playful strategies from the sociocultural approach (Vygotsky, 2009), fos-
tering interaction and collaborative learning in natural sciences (Inf. 4). However, a traditional
Scientific and research competencies of students from an interdisciplinary
perspective in general secondary education
© 2025, Instituto de Estudios Superiores de Investigación y Postgrado, Venezuela
38 Carmen Eloísa Sánchez Molina
transmission-based model persists, focused on the teacher and content (Flórez, 1999). Other
teachers, lacking training in the area, prioritize quantitative assessments, neglecting didactic as-
pects. Competency-based models seek to develop investigative skills through exploration and
practice (Inf. 2), while constructivism promotes direct experimentation to stimulate curiosity and
autonomy (Inf. 3).
On the other hand, teachers must assume a "mediator role" (Vygotsky, 2009; Tebar, 2009), fos-
tering autonomy and meaningful learning through practical activities (Inf. 3). While some adopt
a traditional approach based on memorization and behavioral assessment (Flórez, 1999; Novak
& Gowin, 1988), others promote constructivism by facilitating investigative experiences (labs,
projects) that develop scientific skills (Dewey, 1960). Discovery learning requires students to ac-
tively select and analyze information (Novak & Gowin, 1988), while teachers guide through for-
mative assessment and key questions for meaningful learning.
The use of innovative pedagogical strategies, such as artificial intelligence (AI), fosters scientific
and investigative skills through active and personalized learning (Inf. 4). AI enables simulations
and data analysis, promoting critical thinking and interdisciplinarity. Other techniques include:
(a) Brainstorming (Cirigliano & Villaverde, 1981; Pimienta, 2008), which stimulates creativity
through free and structured ideas. (b) Oral presentations (Castro, 2017), where students organize
and communicate scientific knowledge. (c) Group discussions (Cirigliano & Villaverde, 1981), fa-
cilitating idea exchange in a collaborative environment. (d) Question formulation (Inf. 6), key to
developing critical thinking and scientific inquiry. (e) Problem-solving (Inf. 4), applying theoretical
knowledge in real contexts. (f) Conversational forums (Centro de Investigaciones y Servicios
Educativos, n.d.), promoting reflective dialogue. (g) Debates (Cirigliano & Villaverde, 1981; Pi-
mienta, 2008), encouraging argumentation and participation (Inf. 4, 5, and 6).
Regarding the axial category of learning assessment in natural sciences, this adopts a formative
and process-oriented character, allowing teachers to identify deviations and adjust pedagogical
strategies (Flórez, 1999; Amengual, 1989).
Formative assessment, highlighted in teacher testimonies (Inf. 5 and 6), provides real-time feed-
back, facilitating continuous improvement. Stefflebeam (1987) emphasizes its role as a guide
for decision-making, while summative assessment (Camilloni, 1998) certifies learning achieve-
ments and scientific competencies, integrating hypothesis formulation, experimentation, and
analysis (Inf. 5).
Process-oriented assessment (Alves y Acevedo, 1999) evaluates performance, attitude, and
achievement (Estévez, 2000), transcending final results. Techniques such as observation (anec-
dotal records, rating scales) allow assessment of practical and collaborative skills (Inf. 2, 4 and
6), though they require careful implementation to avoid subjective biases. Instruments like des-
criptive journals (Inf. 5) and checklists optimize objectivity.
On the other hand, from an integrative framework and by way of synthesis, it is proposed that
Revista Digital de Investigación y Postgrado, 6(12), 27-47
Electronic ISSN: 2665-038X
39
scientific and research competencies constitute a fundamental pillar in contemporary educational
formation, integrating cognitive, procedural, and attitudinal dimensions. From a constructivist
perspective (Vygotsky, 1978; Piaget, 1968), these competencies transcend mere knowledge ac-
quisition, promoting essential skills for critical analysis and complex problem-solving. Cognitive
competencies involve the ability to analyze, understand, interpret, and explain scientific concepts
or phenomena. These include:
Scientific argumentation: The ability to structure evidence-based reasoning, fundamental
for communicating findings and refuting ideas. "When an argument is proposed, a re-
ason is given to think its conclusion is true" (Iacona, 2018, p.65). "The ability to formulate
questions, experiment, and effectively communicate findings" (Inf.5) is a core competency
in the scientific process, as it promotes structured communication supporting conclusions
with solid evidence.
Understanding scientific concepts: An essential skill for developing research competencies,
involving not just memorization but the ability to understand and interrelate concepts.
According to Pérez (2008, p.76), it is a "theoretical construction aimed at predicting ex-
perimental outcomes and explaining established facts."
Explaining phenomena scientifically: "The fact exists or is available to the researcher before
constructing the theory meant to explain it" (Díaz et al., 2005, p.101), implying observable
reality must be interpreted through integrating diverse approaches and theories.
Hypothesis formulation: The ability to make grounded predictions based on scientific
knowledge and pattern observation - learning to plan "problems emerging from analy-
zing theoretical-empirical knowledge relationships" (Díaz et al., 2005, p.100).
Critical thinking: The capacity to respond to environmental problems (Guzmán et al.,
2019).
Critical interpretation of data/evidence: Involves evaluating obtained information to draw
valid, well-founded conclusions.
On the other hand, there are procedural competencies that integrate essential practical skills
for scientific research such as inquiry. These competencies foster the application of the scientific
method in real-world contexts, developing observation, critical analysis, and problem-solving
skills (Inf. 2). Active experimentation - such as studying reflex arcs in amphibians (Inf. 6) - rein-
forces meaningful learning by linking theory and practice (Inf. 2), preparing students for con-
temporary scientific challenges.
These competencies consist of: (a) Building and evaluating designs/prototypes: Involves applying
scientific knowledge to create and improve experimental models or devices. Through these ac-
tivities, students are given the opportunity to "design creative and effective solutions" (Inf. 4)
that address contemporary problems. (b) Inquiry: A fundamental pillar in science education, as
it drives students to explore, question, and discover the world around them.
Regarding attitudinal competencies, this group includes competencies that foster essential at-
titudes for scientific work. Among these stand out: (a) Developing curiosity and critical thinking:
Scientific and research competencies of students from an interdisciplinary
perspective in general secondary education
© 2025, Instituto de Estudios Superiores de Investigación y Postgrado, Venezuela
40 Carmen Eloísa Sánchez Molina
"Fostering curiosity and critical thinking is key to helping students understand and internalize
scientific and research competencies" (Inf. 2). (b) Researching, evaluating, and using scientific in-
formation: Involves the attitude of constant knowledge-seeking and the ability to discern bet-
ween valid and invalid information sources. "It requires identifying and solving problems in real
contexts to address actual issues" (Inf. 3).
It should be noted that developing scientific competencies transcends mere knowledge acqui-
sition, integrating cognitive, procedural, and attitudinal dimensions. From a constructivist ap-
proach, it promotes critical thinking (analysis, evaluation, and synthesis of information), scientific
argumentation (structuring evidence-based ideas), and inquiry (hypothesis formulation and ex-
perimental design). These competencies enhance metacognitive skills and complex problem-
solving through an interdisciplinary framework. Additionally, attitudes like curiosity, ethical
commitment, and creativity are essential for applying scientific knowledge in real contexts,
strengthening the theory-practice connection. Effective communication (oral, written, and di-
gital) completes this profile, ensuring knowledge transferability.
Conclusions
At the conclusion of this article, it is determined that the analyzed theoretical frameworks emp-
hasize the need to transition from a traditional educational model to an interdisciplinary one
focused on developing scientific and research competencies. Constructivist theories (Piaget,
Vygotsky, Ausubel) and active models (investigation, discovery) provide tools for designing pe-
dagogical practices that foster curiosity, critical thinking, and knowledge application in real con-
texts. Integrating these perspectives with innovative teaching strategies can transform
classrooms into spaces where students not only learn science but think and act like scientists.
Similarly, it is concluded that educational praxis in scientific and research competencies is groun-
ded in active pedagogical models, such as problem-based and project-based learning, which
promote knowledge application in real-world contexts. These methodologies, combined with
strategies like debates and group discussions, encourage critical thinking and collaborative know-
ledge construction. Formative assessment, with continuous feedback and clear criteria, ensures
meaningful and adaptive learning. Integrating these student-centered approaches enriches the
educational process, preparing students for academic and professional challenges with analy-
tical, creative, and collaborative tools.
Finally, it is concluded that scientific and research competencies are articulated through three
key dimensions: (a) Cognitive (critical thinking, evidence-based argumentation, and interdisci-
plinary understanding of phenomena, grounded in theories like those of Piaget and Vygotsky).
(b) Procedural (inquiry, data interpretation, and prototype construction, following Bruner and
Dewey's "learning by doing" approach). (c) Attitudinal (curiosity as a learning driver and scientific
ethics). These competencies, integrated into General Secondary Education, shape citizens ca-
pable of solving complex problems, innovating, and assuming responsibilities in an intercon-
nected world, combining scientific rigor with creativity and social awareness.
Revista Digital de Investigación y Postgrado, 6(12), 27-47
Electronic ISSN: 2665-038X
41
References
Alves, E. and Acevedo, R. (1999). La evaluación cualitativa. Reflexiones para la transformación
de la realidad educativa. Ediciones Cerined.
Amengual, B. R. (1989). Evaluación formativa. Editorial Cincel.
Arias, G, J. (2017). Problemas y retos de la educación rural colombiana. Educación y Ciudad, 33,
53-62. https://revistas.idep.edu.co/index.php/educacion-y-ciudad/article/view/1647
Barón, P. L. L. (2019). Formación metodológica para el desarrollo de competencias investigativas
en docentes de la asignatura de investigación de educación básica y media. https://reposi-
torio.umecit.edu.pa/bitstream/handle/001/2826/Tesis%20final %20Lorena%20Bar%c3%b3n-
1.pdf?sequence=1&isAllowed=y
Benzanilla, A. M. J., Poblete, R. M., Fernández, N. D., Arranz, T. A. and Campo, C. L. (2018). El
Pensamiento Crítico desde la Perspectiva de los Docentes Universitarios. Estudios Pedagó-
gicos, 44(1), pp. 89-113. https://www.scielo.cl/pdf/estped/ v44n1/0718-0705-estped-44-01-
00089.pdf
Bruner, J. S. (1968). El proceso de la educación. Unión Tipográfica Editorial Hispano.
Bunge, M. (2014). La ciencia, su método y su filosofía. Editorial Sudamericana.
Castro, L. I. (2017). La Exposición como Estrategia de Aprendizaje y Evaluación en el Aula. Editorial
Razón y Palabra.
Centro de Investigaciones y Servicios Educativos. (s.f). El conversatorio como una técnica de
aprendizaje. https://www.cise.espol.edu.ec/sites/cise.espol.edu.ec/files/Guía%20didáctica.-
%20Raíces%20y%20moda.pdf
Charmaz, K. (2013). La teoría fundamentada en el siglo XXI: Aplicaciones para promover estudios
sobre la justicia social. Gedisa.
Chomsky, N. (1970). Aspectos de la teoría de la sintaxis. Aguilar.
Cirigliano, G. F. J. y Villaverde, A. (1981). Dinámicas de grupo y educación. 14ª edición. Hvmani-
tas.
Coll, C., Martín, E., Mauri, T., Miras, M., Onrubia, J. Solé, I and Zabala, A. (1999). El constructivismo
en el aula. Grao.
Dewey, J. (1960). Experiencia y educación. Editorial Losada.
Scientific and research competencies of students from an interdisciplinary
perspective in general secondary education
© 2025, Instituto de Estudios Superiores de Investigación y Postgrado, Venezuela
42 Carmen Eloísa Sánchez Molina
Díaz, B. F. and Hernández, G. (2004). Estrategias docentes para un aprendizaje significativo: una
interpretación constructivista. McGraw-Hill Interamericana.
Díaz, N. V. P., Calzadilla, N. A and López, S. H. (2005). Una aproximación al concepto de hecho
científico. Cinta de Moebio. Revista de Epistemología de Ciencias Sociales, (22), 100-111.
https://revistadesociologia.uchile.cl/index.php/CDM/article/view/26088
Eggen, P. and Kauchak, D. (2015). Estrategias docentes. Enseñanza de contenidos curriculares y
desarrollo de habilidades de pensamiento. Fondo de Cultura Económica.
Figueroa, S, M. F. (2017). Estrategia de aprendizaje para desarrollar habilidades investigativas en
los estudiantes de la Escuela de Cultura Física de la Universidad Técnica de Babahoyo.
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&
ved=2ahUKEwiGlp3J-8uAAxWS_rsIHStwDMoQFnoECBMQAQ&url=https%3A%2F%2Fcyber-
tesis.unmsm.edu.pe%2Fhandle%2F20.500.12672%2F6965&usg=AOvVaw2LWDhNc4Bi2TlN
Qig_bfpb&opi=89978449
Flórez, O. R. (1999). Evaluación pedagógica y cognición. McGrawHill.
Freire, P., (2012). Pedagogía del Oprimido. Siglo XXI.
Frola, P. and Velásquez, J. (2011). Estrategias didácticas por competencias diseños eficientes de
intervenciónpedagógica. Centro de Investigación Educativa y Capacitación Institucional.
Gadamer, H, G. (1984). Verdad y método: fundamentos de una hermenéutica filosófica. Sala-
manca: Sígueme.
Galeano, M, M. E. (2020). Diseño de proyectos en la investigación cualitativa. Fondo Editorial
Universidad EAFIT.
Gamboa, S, A. A., Hernández, S, C. A. and Prada, N, R. (2020). Competencias científicas, inves-
tigativas y comunicativas: experiencias desde una línea de investigación en enseñanza de
las Ciencias. Plumilla Educativa, 14(1), 13-26. https://www.google.
com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKE-
wiLpLfv7q-JAxU2SzABHWoPPQcQFnoECBkQAQ&url=https%3A%2F%2Frevistasum.um ani-
zales.edu.co%2Fojs%2Findex.php%2Fplumillaeducativa%2Farticle%2Fview%2F3827&usg=A
OvVaw1k3KhBYkyqPWD9j44ZkYsh&opi=89978449
Gardner, H. (2000). La educación de la mente y el conocimiento de las disciplinas. Paidós.
Gil, P. D. (1993). Contribución de la historia y de la filosofía de las ciencias al desarrollo de un
modelo de enseñanza/aprendizaje como investigación. Enseñanza de las ciencias. Revista
de investigación y experiencias didácticas, 11(2), 197-212. https://www.
Revista Digital de Investigación y Postgrado, 6(12), 27-47
Electronic ISSN: 2665-038X
43
google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahU-
KEwjiq5mq76-JAxULSTABHbSbNrAQFnoECBYQAQ&url=http%3A%2F%2Fenvia
3.xoc.uam.mx%2Fsite%2Fuploads%2Flecturas_TID%2Funidad1%2FGil%2520Perez.pdf&usg=
AOvVaw2YoXRTZFYOl6vHwprWMcxG&opi=89978449
González, M. (1999). La evaluación del aprendizaje en la enseñanza universitaria. CEPES, Uni-
versidad de La Habana.
Guzmán, D. A. P., Oliveros, C. D. and Mendoza, G. E. M. (2019). Las competencias científicas a partir de la
gestión del conocimiento en instituciones de educación superior. Signos-Investigación en Sistemas de
Gestión, 11(2), 23-40. https://www. redalyc.org/journal/5604/560460636001/html/#:~:text=Las%20com-
petencias%20científicas%20favorecen%20el,a%20los%20profesionales%20recién%20graduados
Herrera, P, P. R. (2016). El desafío de los profesores para aplicar el enfoque indagatorio en sus clases
de ciencias: Análisis del proceso de apropiación del enfoque indagatorio en la enseñanza de las
ciencias por parte de profesores de educación parvularia y básica a través de un proceso de
asistencia técnica educativa. https://dialnet.unirioja.es/servlet/tesis?codigo=80942
Hymes, D. (1986). Acerca de la competencia comunicativa: Forma y Función. Universidad Nacional
de Colombia.
Iacona, A. (2018). La argumentación. Universidad Autónoma de Maduro. https://casadelibrosa-
biertos.uam.mx/contenido/contenido/Libroelectronico /Argumentacion.pdf
Instituto Tecnológico y de Estudios Superiores de Monterrey. (2010). Las estrategias y técnicas
didácticas en el rediseño. El Aprendizaje Basado en Problemas como técnica didáctica.
https://sitios.itesm.mx/va/dide2/tecnicas_didacticas/abp/abp.pdf
Johnson. D. W., Johnson, R. T. and Holubec, E. J. (1994). El aprendizaje cooperativo en el aula.
Editorial Paidós. https://www.ucm.es/data/cont/docs/1626-2019-03-15-
JOHNSON%20El%20aprendizaje%20cooperativo%20en%20el%20aula.pdf
Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development.
Prentice-Hall.
Latorre, M. (2017). Aprendizaje Significativo y Funcional. Universidad Champagnat.
Ley 30 de 1992. (Diciembre 28). Diario Oficial No. 40.700, de 29 de diciembre de 1992.
https://www.oas.org/juridico/spanish/mesicic2_col_ley_30_sp.pdf
López, R. J. A. (2009). La importancia de los conocimientos previos para el aprendizaje de nuevos con-
tenidos. https://archivos.csif.es/archivos/andalucia/ensenanza/revistas/ csicsif/revista/pdf/Numero_
16/JOSE%20ANTONIO_LOPEZ_1.pdf
Scientific and research competencies of students from an interdisciplinary
perspective in general secondary education
© 2025, Instituto de Estudios Superiores de Investigación y Postgrado, Venezuela
44 Carmen Eloísa Sánchez Molina
Lupión C, T. and Martín, G, C. (2016). Desarrollo profesional docente de profesorado. Re-
vista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(3), 686-705.
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&v
ed=2ahUKEwiMqdG1jbSJAxVGRjABHaCLEA0QFnoECBAQAQ&url=https%3A%2F%2Frevistas.u
ca.es%2Findex.php%2Feureka%2Farticle%2Fview%2F2999&usg=AOvVaw1rQeJGnz5pfZkRhzN
lgd0d&opi=89978449
Mamani, C. W. (2017). Constructivismo y socioconstructivismo. Asociación Educativo.
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi7p
q_rsJiJAxUCSzABHbdYAn8QFnoECBUQAQ&url=https%3A%2F%2Fugelpuno.edu.pe%2Fweb
%2Fwp-content%2Fuploads%2F2017%2F05%2FConstructivismo-y-socioconstructivismo_-
feb-2017OK.pdf&usg=AOvVaw1hYHM9x_M0aJhoy2fcaUPY& opi=89978449
Marra, R., Jonassen, D. H., Palmer, B. & Luft, S. (2014). Why problem- based learning works:
Theoretical foundations. Journal on Excellence in College Teaching, 25(3-4), 221-238.
https://www.albany.edu/cee/assets/Why_Problem-based_learning_works. pdf
Martínez, M, M. (2012). Comportamiento humano. Nuevos métodos de investigación. 2a edición
ed. Trillas.
Mazabuel, C. F. (2016). El Aprendizaje Basado en Problemas (ABP) y los juegos tradicionales,
como estrategias para el desarrollo de habilidades metacognitivas en el aprendizaje de las
matemáticas, en los estudiantes del grado quinto de básica primaria de la Institución Educa-
tiva Políndara del Municipio de Totoró. Trabajo de grado de la Maestría en Educación desde
la Diversidad. Universidad de Manizales, Popayán – Colombia. https://ridum.umanizales.edu.
co/bitstream/handle/20.500.12746/2737/PROYECTO%20DE%20GRADO%20CARLOS%20M
AZABUEL2016%20MAESTRIA.pdf?sequence=2&isAllowed=y.
Ministerio de Educación. (2019a). Habilidades y etapas de la investigación científica.
https://www.curriculumnacional.cl/portal/Ejes/Ciencias-Naturales/Habilidades-y-etapas-de-
la-investigacion-cienti fica/
Ministerio del Poder Popular para la Educación. (2017). Áreas de Formación en Educación Media
General. Ministerio del Poder Popular para la Educación.
Moreira, M. (2017). Aprendizaje significativo como un referente para la organización de la ense-
ñanza. Archivos de Ciencias de la Educación, 11 (12), e29. https://www.memoria.fahce.unlp.
edu.ar/art_revistas/pr.8290/pr.8290.pdf
Novak, J. D. and Gowin, D. B. (1988). Aprendiendo a aprender. Martínez Roca.
Otálora, S. S. (2009). La enseñanza para la comprensión como estrategia pedagógica en la formación
de docentes. Revista temas, 3. 121-130. https://dialnet. unirioja.es/servlet/articulo?codigo=5894332
Revista Digital de Investigación y Postgrado, 6(12), 27-47
Electronic ISSN: 2665-038X
45
Pérez, M. L. A. (2008). Estructura y uso de los conceptos científicos. Krei, (10), 75-87.
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&u
act=8&ved=2ahUKEwj0pYnn5a-JAxVzRjABHdYiB-4QFnoECBcQAQ&url=https%3A%2F%2Fdial-
net.unirioja.es%2Fdescarga%2Farticulo%2F3202584.pdf&usg=AOvVaw0xLkVV6pOb9XWSx-
doF3Zt&opi=89978449
Perraudeau, M. (2001). Piaget Hoy. Respuestas a Una Controversia. Fondo de Cultura Econó-
mica.
Perrenoud, Ph. (1999). Construir las Competencias desde la Escuela. Artmed Editora.
Piaget, J. (1968a). Psicología y pedagogía. Ariel.
Piaget, J. (1968b). Los estadios del desarrollo intelectual del niño y del adolescente. Editorial Re-
volucionaria.
Pimienta, P. J. H. (2008). Constructivismo. Estrategias para aprender a aprender. 3ª edición. Pear-
son Educación.
Porlán, R. (2002). Constructivismo y Escuela. Hacia un modelo de enseñanza-aprendizaje basado
en la investigación. 6ª. Ed. Díada Editoral S.L.
Pozo, J. I. and Gómez, C, M. Á. (2010). Por qué los alumnos no comprenden la ciencia que
aprenden. Alambique, Didáctica de las Ciencias Experimentales, 66, 74-79.
Ribera de Parada, A. (2007). Aprendizaje Basado en Problemas (ABP). Estrategia para dinamizar
la cátedra universitaria. Población y desarrollo, (4), 29–35. https://doi.org/10.5377/creacien-
cia.v0i4.9161
Rivera, L. J. M. (2004). El aprendizaje significativo y la evaluación de los aprendizajes. Revista de
investigación educativa año, 8(14), 47-52. http://online.aliat.edu. mx/adistancia/dinamica/lec-
turas/El_aprendizaje_significativo.pdf
Rojas de Escalona, B. (2010). Investigación cualitativa: fundamentos y praxis. 2a ed. FEDEUPEL.
Roselli, N. D. (2016). El aprendizaje colaborativo: Bases teóricas y estrategias aplicables en la
enseñanza universitaria. Propósitos y Representaciones, 4(1), 219-280. doi: http://
dx.doi.org/10.20511/pyr2016.v4n1.90
Rosillo, J. J. (2018). Constructivismo y socioconstructivismo. https://danielalmeyda.wordpress.com/wp-
content/uploads/2018/03/tema-1-constructivis mo -y-socioconstructivismo.pdf
Samper, B. A. and Ramírez, L. A. (2014). Diseño de una propuesta pedagógica de educación para
Scientific and research competencies of students from an interdisciplinary
perspective in general secondary education
© 2025, Instituto de Estudios Superiores de Investigación y Postgrado, Venezuela
46 Carmen Eloísa Sánchez Molina
la seguridad vial estructurada bajo el modelo de aprendizaje experiencia. Corporación Univer-
sitaria Minuto de Dios. https://repository.uniminuto.edu/server/ api/core/bitstreams/df21c205-
3903-40dc-823ef7ebb556fa09/content
Sánchez, S. I. R. and Herrera San Martín, E. d. C. (2019). Aprendizaje significativo y desarrollo
de competencias científicas en física a través de la Uve Gowin. Revista electrónica de inves-
tigación en educación en ciencias, 14(2), 17-28. https://www.scielo.org.ar/scielo.php?script=
sci_abstract&pid=S1850-66662019000200002
Secretaría de Educación Pública. (s.f). Área de conocimiento Ciencias Naturales. Documento de
trabajo y de consulta para propiciar el diálogo y el intercambio de ideas y puntos de vista
con las comunidades educativas de la Educación Media Superior en México. https://educa-
cionmediasuperior.sep.gob.mx/work/models/sems/Resource/13516/1/images/Ciencias%20n
aturales%20s.pdf
Shaw, R. D. (2014). How Critical Is Critical Thinking. Music Educators Journal, 101(2), 65-70.
http://journals.sagepub.com/doi/abs/10.1177/0027432114544 376
Stufflebeam, D. and Shinkfield, A. J. (1987). Evaluación sistemáfica: guía teórica y práctica. Pai-
dós-MEC.
Sulmont, L. (2022). ¿Qué tal si revisamos en qué consisten los conocimientos previos? Educared
https://educared.fundaciontelefonica.com.pe/que-tal-si/que-tal-si-revisamos-en-que-con-
sisten-los-conocimientos-previos/
Tébar, B. L. (2009). El profesor mediador del aprendizaje. Magisterio.
Tekman. (2021). ¿Qué estrategias utilizar para alcanzar un aprendizaje significativo en el aula?
Blog 13/04/2021. https://www.tekmaneducation.com/aprendizaje-significativo-aula/
Thrive Teaching. (2024). La curiosidad potencia su capacidad de pensamiento crítico. https://thri-
veteaching.org/es/curiosity/
Tobón, S. (2006a). Las competencias en la educación superior. ECOE.
Tobón, S. (2006b). Aspectos básico de la formación basada en competencias. Proyecto Mesesup.
Universidad del Desarrollo. (2021). 7 consejos para implementar el Aprendizaje Experiencial.
https://practicaspedagogicaspsicologia.udd.cl/files/2020/11/plantilla5_a_experiencial.pdf
Vaillant, D. y Manso, J. (2019). Orientaciones para la Formación Docente y el Trabajo en el
aula: Aprendizaje Colaborativo. SUMMA Laboratorio de Investigación e Innovación en
Educación para América Latina y el Caribe. https://panorama.oei. org.ar/_dev2/wp-con-
Revista Digital de Investigación y Postgrado, 6(12), 27-47
Electronic ISSN: 2665-038X
47
tent/uploads/2019/05/APRENDIZAJE-COLABORATIVO.pdf
Veloza, R, R. A. and Hernández, S, C. A. (2018). Valoración de las estrategias adoptadas por docentes
en la enseñanza de la ciencia desde la perspectiva de los estudiantes de educación básica.
https://publicaciones.autonoma.edu.co/index. php/anfora/article/view/512
Vigotsky, L. S. (1985). Pensamiento y Lenguaje. La Pléyade.
Vigotsky, L. S. (2009). El Desarrollo de los Procesos Psicológicos Superiores. 3ª ed. Crítica.
Scientific and research competencies of students from an interdisciplinary
perspective in general secondary education